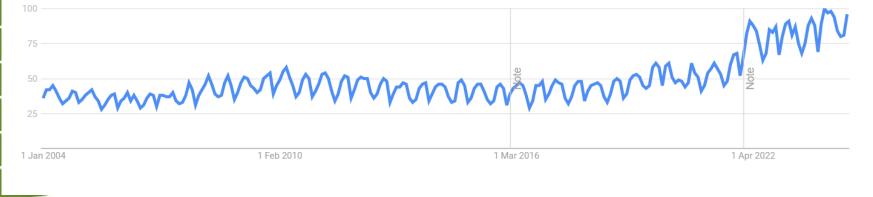
Is ex situ soil bioremediation really sustainable?

Thomas Aspray


SCLF annual conference 13th September 2024

Release the Value of Your Land

Specialist Site Investigation and Remediation Contractor

Google Trends (Worldwide) – 'Sustainability'

Sustainability of (bio)remediation

- Assumed
- Sustainability associated buzzwords e.g., bio-based
- No distinction made between in situ and ex situ bioremediation

In the last century, rapid industrialization and urbanization have left a large quantity of a wide range of pollutants emitted from both natural and anthropogenic sources. These pollutants have detrimental effects on the flora, fauna and natural environment. The persistence and prevalence of these pollutants virtually in all the ecosystems of Earth are of a major concern. Although a large number of conventional physical and chemical methods are available for cleaning up the environment, they are not sustainable and have inherent limitations. Hence, an alternate ecosustainable, bio-based and environment-friendly approach recognized as *Bioremediation* has emerged. In bioremediation, biodiversity acts as a toolbox providing various processes/mechanisms to eliminate, immobilize/stabilize, degrade or transform various hazardous contaminants into innocuous and value-added products. This approach uses a vast array of biological agents, especially bacteria (microbial remediation), fungi (mycoremediation), algae (phycoremediation), higher plants (phytoremediation), biochar, nano-biomaterials, etc.

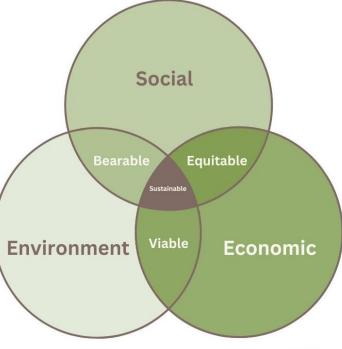
ABSTRACT

Pesticides usage has tremendously increased to enhance crop production; however some pesticides are toxic and harmful to human health and the environment. This review discusses the eco-toxicological impacts of pesticides on the environment. This study extensively evaluates various sustainable remediation technologies such as advanced oxidation processes (AOPs), electrochemical processes, membrane separation, and adsorbent types (carbon nanotubes, carbon nanofiber, carbon aerogel, graphene oxide, carbon dot, biochar, biosorbents, polymers, metal-organic framework, and nanocomposite) that are used for removal of toxic pesticides from aqueous bodies. Further, various equilibrium isotherm and kinetic models that are used for understanding the mechanisms along with challenges in the techniques are discussed. From the studies, it is observed that the nano-composites could degrade and remove pesticides efficiently due to their unique properties, making them promising adsorbents for water and wastewater remediation. This review will be an inclusive paper for readers to easily define research gaps and develop novel treatment methods for removing pesticide-contaminated waters.

Soils are polluted by both organic and inorganic substances. Plants growing in polluted soils suffer damages such as leaf rolls, chlorosis, growth inhibition, root tips browning, and death of plant. Soil pollutants such as hydrocarbon and heavy metals are absorbed by crops and such ends up being consumed by human posing health risk like cancer and respiratory abnormally. Conventional methods of remediation such as chemical and physical methods are very expensive and not sustainable. Excavation, which is a type of physical method, merely shifts the pollutant from one site to another. Bioremediation is a biological method of reclaiming polluted soils. Bioremediation is less expensive and more sustainable and safer when compared to the conventional methods of reclamation of polluted environment. This

What is ex situ soil bioremediation?

- Microbially driven process
- Ex situ remediation technique = mobile plant
- Suitable for range of hydrocarbon/organic contaminants
- Once treated, material can be reused onsite if meets site cleanup target(s)
- Cost effective treatment = sustainable?



Sustainable remediation - SuRF

the practice of demonstrating, in terms of environmental, economic and social indicators, that the benefit of undertaking remediation is greater than its impact and that the optimum remediation solution is selected through the use of a balanced decision-making process (SuRF UK, 2010)

Environmental	Social	Economic
Air	Human health and safety	Direct economic costs and benefits
Soil and ground conditions	Ethics and equality	Indirect economic costs and benefits
Groundwater and surface water	Neighbourhood and locality	Employment and employment capital
Ecology	Communities and community involvement	Induced economic costs and benefits
Natural resources and waste	Uncertainty and evidence	Project lifespan and complexity

Factors affecting the holistic sustainability assessment

- At what point in the project?
- Who is making the assessment?
 - Consultant on behalf of client (awareness of project as a whole)
 - Remediation contractor
- Client/project type
 - Planning system projects
- Stakeholders
- What are contractors being asked for?

Environmental	Social	Economic
Air	Human health and safety	Direct economic costs and benefits
Soil and ground conditions	Ethics and equality	Indirect economic costs and benefits
Groundwater and surface water	Neighbourhood and locality	Employment and employment capital
Ecology	Communities and community involvement	Induced economic costs and benefits
Natural resources and waste	Uncertainty and evidence	Project lifespan and complexity

Sustainable remediation – ISO standard

Elimination and/or control of unacceptable risk in a safe and timely manner whilst optimising the environmental, social and economic value of the work (ISO 18504:2017 - Soil quality: Sustainable remediation)

Qualitative	Semiquantitative	Quantitative
Narrative or ranking e.g., 'better', 'neutral', 'worse' or '1', '2', '3'	Quantify some but not all indicators (e.g., quantitative assessment of CO ₂ footprint and direct cost)	LCA or environmental (footprint) analysis

Adapted from ISO 18504:2017

(Bio)remediation carbon footprinting

Develop a simple quantitative tool to determine CO₂ emissions for our ex-situ soil (bio)remediation approach(es)

Objective – compare CO₂ emissions for a commercial ex situ bioremediation project using actual project data and compare with the theoretical emissions of haulage and landfill disposal

MSc project – Emmanuel Bello (Teeside University)

Glasgow Commonwealth Games Athletes' village case study

Element	Sub element	kgCO2e	% of total
Staff transport		162120	7.0
Plant total		251499	10.8
	Plant transport	33341	
	Plant embodied	218158	
Material total		321184	13.8
	Material transport	88382	
	Material embodied	232802	
Exploratory locations		4394	0.2
Testing		237	0.0
Fuel use total		1588307	68.2
	Fuel delivery	3401	
	Plant use (soil washing)	1027850	
	Soil washing	131862	
	Compound energy	425193	
Total		2328171	100%

- Post project assessment
- 175,000 m³ (of which 116,000 m³ treated by soil washed)
- Hypothetical landfill disposal scenario estimated as 14% higher CO₂ emissions
- Models mentioned in the paper no longer publicly available

Adapted from Sampson et al., 2013

ERS ex situ bioremediation project – CO₂ emissions

Element	Description CO ₂ emissions (kg)		% of total
1	Haul onsite to treatment area	2896	8.5
2	Screening oversize	1068	3.1
3	Treatment (excavator)	20324	59.9
4	Hauling (extra)	2040	6.0
5	Staff travel to/from site	2185	6.4
6	Nutrient	648	1.9
7	Welfare facilities	4197	12.4
8	Sample testing	90	0.3
9	Supply of biopile covers	473	1.4
	Total	33921	

- Post project assessment
- 1500 m³ material
- Hypothetical haulage for landfill disposal scenario estimated as 4-19% higher CO₂ emissions
- Further developed since this project and applied on wider range of waste/remediation projects including pre-project assessments

Open access CO₂ calculators

\checkmark : $\times \checkmark f_x \checkmark$												
ВС	D	E	F	G	Н	I	J	К	L	М	N	0
e warksheat allows the wear to define metarial production, transportation, equipm	ont use and residual	handling variables f	os the semedial alter	mativa								
s worksheet allows the user to define material production, transportation, equipm low cells require the user to choose an input from a drop down menu	ent use, and residual i	nandling variables to	or the remedial alter	native								
ite cells require the user to type in a value												
SELINE INFORMATION					Reset	All Values						
MPONENT 1 DURATION AND COST	Entire Site	7										
Input duration of the component (unit time)	Entite Site	-										
Input component cost per unit time (\$)	· · ·											
		-										
ITERIAL PRODUCTION												
LL MATERIALS	Well Type 1	Well Type 2	Well Type 3	Well Type 4	Well Type 5	Well Type 6	Well Type 7	Well Type 8	Well Type 9	Well Type 10	Well Type 11	Well Type 1
Input number of wells	in on Type T	101 19052						101 19250				
Input depth of wells (ft)												
Choose specific casing material schedule from drop down menu	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC	Sch 40 PVC
Choose well diameter (in) from drop down menu	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
Input total quantity of Sand (kg)												
Input total quantity of Gravel (kg)												
Input total quantity of Bentonite (kg)												
Input total quantity of Typical Cement (kg)												
Input total quantity of General Concrete (kg)												
Input total quantity of Steel (kg)												
EATMENT CHEMICALS & MATERIALS	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Treatment 5	Treatment 6	Treatment 7	Treatment 8	Treatment 9	Treatment 10	Treatment 11	Treatment 1
Input number of injection points												
Choose material type from drop down menu	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Peroxide	Hydrogen Perox
Input amount of material injected at each point (pounds dry mass)												
Input number of injections per injection point												
EATMENT MEDIA	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Treatment 5	Treatment 6	Treatment 7	Treatment 8	Treatment 9	Treatment 10	Treatment 11	Treatment 1
Input weight of media used (Ibs)		NC 1 040	V. 1. 040	NC 1 040	NC 1 010	10.000		10.1010	NC 1 040	10.1010	Nr. 1. 040	
Choose media type from drop down menu	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC	Virgin GAC
INSTRUCTION MATERIALS	Material 1	Material 2	Material 3	Material 4	Material 5	Material 6	Material 7	Material 8	Material 9	Material 10	Material 11	Material 12
Choose material type from drop down menu	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner	HDPE Liner
Input area of material (ft2)												
Input depth of material (ft)												
												-
ELL DECOMMISSIONING	Well Type 1	Well Type 2	Well Type 3	Well Type 4	Well Type 5	Well Type 6	Well Type 7	Well Type 8	Well Type 9	Well Type 10	Well Type 11	Well Type 12
Input number of wells												
Input depth of wells (ft)												
Input well diameter (in)				Soil	Soil							
	Soil	Soil	Soil	000	1 001							
Input well diameter (in) Choose material from drop down menu						Cuntain C	Custain 7	Combrin C	Custain C	Custain 10	Custain 11	Combain 12
Input well diameter (in)	Soil Curtain 1	Soil Curtain 2	Soil Curtain 3	Curtain 4	Curtain 5	Curtain 6	Curtain 7	Curtain 8	Curtain 9	Curtain 10	Curtain 11	Curtain 12

Conclusions

Remediation sustainability assessments are project, time, viewpoint specific

- CO₂ accounting of value to increased number of client types
- Ex situ bioremediation is a cost-effective treatment which can also reduce project CO₂ emissions when compared to landfill disposal
- By going through this process, we are optimising our ex-situ (bio)remediation soil treatment from a CO₂ emissions perspective

Questions?

Dr Tom Aspray BSc PhD CSci FISoilSci Technical Manager

> E: tom@ersremediation.com T: 0141 772 2789 M: 07901 557 591

